Найдите неизвестные углы параллелограмма ABCD если:
а) угол B= 130°
б) угол A + угол C = 140°
ответ: а) ∠ B = ∠ D =130°
∠ A = ∠ C = °50
- - - - - - - - - - - - - - - -
б ) ∠ A = ∠ C = ( ∠A + ∠ C) / 2 =140°/2 =70° ;
∠ B = ∠ D =180° -∠A =180° - 70° =110 °
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
1) ∠М = 45°,
ΔАВО = ΔСМО по стороне и двум прилежащим углам
2)∠А₁ = 40°; ∠А₂ = 60°
3) ∠А = 70°
∠С = 50° (
∠В = 60°
Объяснение:
1) ВС = ОС (по условию)
∠ВОА = ∠МОС (как вертикальные при пересекающихся прямых )
и равны 180 - ∠АОС = 85°, следовательно ∠АВС = ∠АМС = 45°
ΔАВО = ΔСМО по стороне и двум прилежащим углам
2)
АН = высота на сторону ВС
(1) ∠В : ∠С = 5 : 3 ⇒ 3∠В = 5∠С (по условию))
(далее значки углов просто опустим)
(2) А -80 = В - С (по условию)
( 3) А+В+С = 180 (по свойству треугольника)
из (1) В = 5С/3
из (3) А = 180-В - С
подставим это в (2), получим 180 - 5С/3-С +80 = 5С/3 -С ⇒ ∠С = 30°
тогда ∠В = 50°,
∠А = 100°
тогда из треугольников АНС и АВН вычислим ∠А₁ = 40°; ∠А₂ = 60°
3)
∠А = 140/2 = 70° (равен половине дуги, на которую опирается)
∠С = 100/2 = 50° (аналогично)
∠В = 180-70-50 = 60°
Уг. ADC = уг BDC. уг A = уг BCD. угB = уг DCA
следует что BC относится к FC как 10 к 5 =2
ответ: 2