1. У ромба АВСD все стороны равны. Значит каждая сторона = 60 : 4 = 15(см) Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см 2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см. Периметр ABCD=12+12+7+7= 38(см) 3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм. АD=BC=ВМ+МС=9+4=13 дм AD=13 дм
Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
Возьму для примера треугольник ABC.Пусть AB катет=12,значит гипотенуза равна x+6,другой катет равен x
по теореме пифагора
(x+6)в квадрате=12 в крадрате+x в квадрате
раскрываем по формуле квадрат суммы скобку и остальное ввозводим в кв.
x2+12x+36=144+x2
x2+12x+36-144-x2=0 x2(квадраты) взаимно уничтожаем ПОЛУЧАЕМ
12x-108=0
12x=108
x=9
2)Т.к мы обозначали за x катет AС,а гипотенуза BC=x+6,тогда 9+6=15.
ВС гипотенуза =15.ВРОДЕ ТАК