S usind 152. В прямоугольном параллелепипеде найдите угол ABD,, если АВ=5, AD=4 и AA =3 (рис. 12). (12) D 13 C с (14) Н G 1 СІ A1 Bi А, E В. F 10 см 13 С D 5 C С IC С 5 4 10 см B А A 4 В А A 10 см В
1.Сумма длин средних линий равна половине периметра этого треугольника-22см. 2.∠A =( 360°/(2+7+6+3)) *3 =(360°/18)*3 =20°*3 =60°. ∠B =20°*7=140° ,∠C =20°*6 =120°,∠D =20°*3 =60°. 3.Находим гипотенузу:9^2+40^2=81+1600=корень из 1681=41^2. Складываем гипотенузы и катеты: 9^2+41^2+40^2=90^2см2 4.Раздели отрезок на 8 равных частей и поставь в точку. 5.пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰ ответ: 60⁰,120⁰,120⁰,60⁰.
1. Рассмотрим прямоугольный треуг-ик ABD. Здесь катет АВ, лежащий против угла в 30°, равен половине гипотенузы AD: AB=1/2AD, AD=2AB Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим угол А: <A=90-<ADB=90-30=60° Угол D в трапеции ABCD равен: <D=30+30=60° Углы при основании трапеции равны, значит, она равнобедренная, и АВ=CD. Рассмотрим треугольник BCD. <CBD=<ADB как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей BD. <CDB=30°, значит треугольник BCD равнобедренный, поскольку углы при его основании BD равны. ВС=CD. Но CD=AB, значит ВС=CD=AB Таким образом мы можем принять АВ, ВС, CD за х, а AD - за 2х (т.к. AD=2AB см. выше). Зная периметр, запишем: AB+BC+CD+AD=P x+x+x+2x=60 5x=60x=12 AD=2*12=24 см
2. Рассмотрим прямоугольный треуг-ик АЕВ. Он равнобедренный по условию (диагональ ВЕ равна стороне АЕ, она будет равна и стороне ВС). В равнобедренном треуг-ке углы при основании равны. Найдем их: <A=<ABE=(180-<AEB):2=(180-90):2=45° Поскольку противоположные углы параллелограмма равны, то <C=<A=45° <ABC=<AEC=90+<ABE=90+45=135°
Можно фото?
Птм шығарып көремін