1.АВСД-квадрат, АС=10, АВ=ВС=х по теореме Пифагора
х^2+x^2=10^2
2x^2=100
x^2=50
x=5 корень из 2
2. Так как сумма углов трапеции 360, а трапеция равнобедренная, то острые углы при большем основании равны 45 градусов. Трапеция АВСД, АВС=135, угол ВАД=45, высота ВЕ=2, меньшее основание ВС=4
Рассмотрим треугольник, образованный высотой АВЕ, он прямоугольный (угол ВЕА-прямой), так в треуг. сумма углов 180 градусов, то угол АВЕ=45 градусов и равен углу ВАЕ, значит треуг. равнобедрен. и АЕ=ВЕ=2, опустив высоту СК, также получаем СК=СД=2, ВС=ЕК=4, значит АД=2+2+4=8.Площадь трапеции
S=1/2*(ВС+АД)*ВЕ
S=1/2(4+8)*2
S=12
3.S=1/2(a+b)h=168
h=3a и h=b/2, тогда
а=h/3 и b=2h
1/2(h/3+2h)h=168
h^2/3+2h^2=168*2
(h^2+6h^2)/3=336
7h^2=1008
h^2=144
h=12
a=12/3=4
b=12*2=24
4. в треуг. АВС, угол С=30(сумма углов 180), сторона ВС=СА=а, так АВС равнобедренный (угол А=В),
площадь тругольника равна 1/2 роизведению сторон на sin угла между ними.
S=1/2(ВС*СА)sinC=36
1/2(а*а)sin30=36
a^2*sin30=72
a^2*1/2=72
а^2=144
a=12
Объяснение:
В условии, очевидно, ошибка: треугольник АВС с такими сторонами не существует, так как любая сторона треугольника меньше суммы двух других сторон, а 6 > 4 + 1.
Эта задача на тему "Подобие треугольников" . Решим ее для ВС = 7 см.
АВ : MK = 4 : 8 = 1/2
AC : MN = 6 : 12 = 1/2
BC : KN = 7 : 14 = 1/2
Значит ΔАВС подобен ΔMKN по трем пропорциональным сторонам.
Сумма углов треугольника равна 180°, значит
∠С = 180° - (∠А + ∠В) = 180° - (80° + 60°) = 180° - 140° = 40°
В подобных треугольниках напротив сходственных сторон лежат равные углы:
∠N = ∠С = 40°,
∠K = ∠В = 60°,
∠M = ∠А = 80°.
это наверно