Если О - общая середина отрезков АВ и СD, то АО=ОВ и ОС=OD. Углы АОС и BOD тоже равны, причём 90 градусов, потому что отрезки перпендикулярны. Поэтому треугольники АОС и BOD равны по двум сторонам и углу между ними, а значит, стороны АС и BD тоже равны. Доказано.
Δ АВС - равнобедренныйВК = 30 см - биссектриса к основанию АС, она же и медиана Δ АВС ⇒ АК=КСNM = 16 см - средняя линия II АС ⇒AN=NBNK = ? - средняя линия II ВС NM x ВК в т.О и деляться ей пополам, т.к. Δ NMB подобен Δ АВС по 3-м углам, ⇒ Δ NMB равнобедренный и ВО его высота, биссектриса и медиана. ВО=ВК т.к. NM средняя линия Δ АВСПолучаемNO=1/2NM= 16/2=8OK=1/2ВК= 30/2=15Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90°<NOK - смежный и =180°-<BON = 90°По теореме Пифагора находим NK - гипотенузу Δ NOK NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см
Есть треугольник, в котором высота делит его на 2 части, т. е. на 2 треугольника. Следовательно, сумма 2-ух углов снизу, где оканчивается высота равна 180 градусов, т.к. оба они по 90 градусов. Остальные в треугольниках по 45 градусов, потому что в одном треугольнике сумма всех углов составляет 180 градусов. А у нас 2 треугольника и они равны между собой, потому что они равнобедренные и их делит одна высота. у равнобедреного треугольника углы при основании равны если провести высоту то будет два прямоугольных треугольников угол у прямоугольного треугольника один 90 второй 60 а третий 30 если катет тридцеть то по правилу возле катита в 30 градусов лежит половина гипотенузы следоватьльно равнобедренные треугольники будут равны