Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Вспомним свойство основания высоты пирамиды: Основание высоты пирамиды совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий: 1) Все апофемы равны 2) Все боковые грани одинаково наклонены к основанию 3) Все апофемы одинаково наклонены к высоте пирамиды 4) Высота пирамиды одинаково наклонена ко всем боковым граням. И наоборот - если снование высоты пирамиды совпадает с центром вписанной в основание пирамиды окружности, то справедливы приведенные выше условия. В данной задаче основание высоты пирамиды совпадает с центром вписанной окружности. Следовательно, все апофемы равны. Подробное решение в приложении. ---------- [email protected]
1.)Дано: BA=DC, AO=CO, BO=DO
Найти: Равные треугольники.
Если BA=DC, AO=CO, BO=DO
Следовательно: ∡BOA =∡DOC и ∡BAC =∡DCA
Значит:
ΔBOA = ΔDOC
ΔBAC = ΔDCA
Объяснение: