
При пересечении параллельных прямых секущей образуется 8
углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.
x + x + 30° = 180°
2x = 150°
x = 75°
∠1 = ∠5 = ∠3 = ∠7 = 75°
у = 180° - 75° = 105°
∠2 = ∠6 = ∠4 = ∠8= 105°
Данный двугранный угол равен линейному SEO, где Е - середина стороны AD.
Квадрат со стороной 18 имеет диагональ 18 корней из 2, половина этой диагонали - отрезок ОА - равен 9 корней из 2. Из треугольника ASO находим:
SA = 18 корней из 2.
Поскольку в основании квадрат, то SA = SD, треугольник ASD равнобедренный с тремя известными нам сторонами: 18 корней из 2; 18 корней из 2; 18.
Высота, проведенная к основанию SE = 9 корней из 7.
Отрезок ОЕ = 18/2 = 9
Косинус угла SEO равен (корень из 7)/7
Искомый угол равен arccos√7/7.