Діагоналі ромба перпендикулярні і точкою перетину діляться навпіл.
Виходячи з цього св-ва знайдемо їх полусумму, яка так само є сумою катетів будь-якого з п / у трикутників, утворених Цими діагоналями:
d1 + d2 = 61
(D1 + d2) / 2 = 31
d1 = x; d2 = (31-x)
Складемо рівняння на основі теореми Піфагора:
625 = x ^ 2 + (31-x) ^ 2
2x ^ 2-62x + 336 = 0
x ^ 2-31x + 168 = 0
D = 289;
x1 = 7
x2 = 24
Ну так як 31-7 = 24, то катети будуть 24см і 7см
Діагоналі будуть в 2 рази довше, тобто 48см і 14см
S = 48 * 14 * 1/2 = 336 (см2)
Объяснение:
ответ:
объяснение:
пирамида правильная. значит, основанием данной пирамиды является правильный треугольник, а вершина проецируется в его центр.
центр правильного треугольника - центр вписанной и описанной окружности, т.е. точка пересечения его высот, являющихся в правильном треугольнике и медианами и биссектрисами.
а)
площадь поверхности пирамиды - сумма площадей основания и боковой поверхности.
формула площади правильного треугольника через его сторону
s=a²•√3/4
s(abc)=16√3/4=4√3 см²
в правильной пирамиде все боковые грани - равные равнобедренные треугольники.
для нахождения их площади следует найти апофему (апофемой называется высота боковой грани, проведенная из вершины правильного многоугольника.)
углы правильного треугольника равны 60°
высота основания сн=вс•sin60°=4•√3: 2=2√3
в правильном треугольнике высота=медиана.
медианы треугольника точкой пересечения делятся в отношении 2: 1, считая от вершины. =>
он=2√3: 3=2√3: 3
он⊥ав=>
по т. о 3-х перпендикулярах мн⊥ав и является высотой ∆ амс.
высота пирамиды перпендикулярна плоскости основания. =>
мо⊥сн
по т.пифагора из прямоугольного ∆ мон
мн=√(mo*+oh*)=√(36+12/9)=√(336/9)=(√336)/3
s(amb)=mh•ab: 2=(2√336)/3
s (бок)=3•(2√336): 3=2√336
s (полн)=4√3+2√336=2√3•(2+√112)=≈ 43,5888 см²