Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
S_bok=1/2 Pa
Углы AOC и FOD равны как вертикальные. Треугольники CAO и DFO равны по стороне и прилежащим углам. В равных треугольниках против равных углов лежат равные стороны, CO=DO. Треугольники CBO и DEO равны по трем сторонам. В равных треугольниках против равных сторон лежат равные углы, ∠CBO=∠DEO.
AO=FO, ∠A=∠F (по условию), ∠AOC=∠FOD (вертикальные углы)
=> △CAO=△DFO (по стороне и прилежащим углам)
=> CO=DO (соответствующие стороны в равных треугольниках)
CB=DE, BO=EO (по условию)
=> △CBO=△DEO (по трем сторонам)
=> ∠CBO=∠DEO (соответствующие углы в равных треугольниках)
AB=14
AC=2AB=14*2=28
BC=AC-4=28-4=24
BM=MC=1/2 BC=24/2=12
P=AC+AM+MC
P=28+15+12=55