Дано:
Прям. тр. с острым углом в 60 градусов;
Сумма гипотенузы и катета = 42см.
Найти:
Гипотенуза.
Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
2х+х=42
х=42:3
х=14
ответ: 14.
Если катет = 14см, то гипотенуза = 14*2 = 28см.
ответ: 28см.
треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше