Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Высота боковой грани МАВ - прямая МА, которая из тр-ка МАД равна: МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм. Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна: МС=√(МД²+СД)=√(15²+20²=25 дм. Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм². Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм². Площадь двух граней, прилежащих к высоте МД: S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм². Площадь основания: S4=АВ·АД=20·10=200 дм². Общая площадь - это сумма всех найденных площадей: S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42