1-ая задача:
вкратце)
расстояние- это перпендикуляр
поэтому треугольник АВН прямоугольный.(Н- точка расстояния от М до АВ)
угол САМ равен МАН(т.к. АМ бисс)
АМ- общая сторона
из этого АСМ=АМН(треугольники)
из чего СМ=МН=7см
ответ:7см
2-ая задача:
Любая точка биссектрисы неразвёрнутого угла равноудалена от сторон этого угла.
Доказательство:
Рассмотрим треугольники BFK и BFP.
∠BKF=∠BPF=90º, ∠KBF=∠PBF (так как по условию BD — биссектриса ∠ABC).
BF — общая сторона.
Значит, ∆BFK=∆BFP (по гипотенузе и острому углу).
Из равенства треугольников следует равенство соответствующих сторон: FK=FP.
Что и требовалось доказать.
Рассмотрим 2 треугольника: АВВ1, АОС1:
- оба прямоугольные
- уголВАО общий
известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или:
уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2),
очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем:
уголАВС+уголВАО=уголАОС+уголВАО,
уголАВС=уголАОС, ч.т.д
или вот так:
уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1))
Тогда π/2-уголВСС1=π/2-уголОСВ1,
а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить:
уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.