Объяснение:
1)Дано окр. О(r) , АВ, СD-диаметры .
Доказать АС=BD
Доказательство.ΔАОС=ΔВОD по двум сторонам и углу между ними : АО=ОВ и СО=ОD как радиусы одной окружности, ∠АОС=∠ВОD как вертикальные .
2) Дано окр. О(r) , r=9 см , АВ, АС-касательные, ∠ВАС=120°.
Найти: АВ , АС.
Решение. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания ⇒∠ОВА=∠ОСА=90°. Проведем АО.
Отрезки касательных к окружности, проведенных из одной точки, равны , т.е АВ=АС , и составляют равные углы с прямой, проходящей через эту точку и центр окружности, т.е. ∠ВАО=∠САО=120°:2=60°.
ΔВАО : ∠ВОА=90°-60°=30°. Пусть АВ=х , по св. угла 30° ⇒ОА=2х. По т. Пифагора (2х)²=х²+9² или 3х²=81 или х²=27 или х=3√3. АВ=АС=3√3 см

Объяснение:
1)Дано окр. О(r) , АВ, СD-диаметры .
Доказать АС=BD
Доказательство.ΔАОС=ΔВОD по двум сторонам и углу между ними : АО=ОВ и СО=ОD как радиусы одной окружности, ∠АОС=∠ВОD как вертикальные .
2) Дано окр. О(r) , r=9 см , АВ, АС-касательные, ∠ВАС=120°.
Найти: АВ , АС.
Решение. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания ⇒∠ОВА=∠ОСА=90°. Проведем АО.
Отрезки касательных к окружности, проведенных из одной точки, равны , т.е АВ=АС , и составляют равные углы с прямой, проходящей через эту точку и центр окружности, т.е. ∠ВАО=∠САО=120°:2=60°.
ΔВАО : ∠ВОА=90°-60°=30°. Пусть АВ=х , по св. угла 30° ⇒ОА=2х. По т. Пифагора (2х)²=х²+9² или 3х²=81 или х²=27 или х=3√3. АВ=АС=3√3 см

Четырехугольник АВСД, угол ВСД=26, угол АДС=53
дуга ВД = 2 х угол ВСД= 2 х 26=52, дуга АС = 2 х угол АДС = 2 х 53=106
Дуга АВ = а
Дуга АД = 52-а, Дуга ВС = 106-а
Дуга СД = 360 - дуга АД- дугаАВ - дуга ВС= 360-(52-а) - а - (106-а) =202+а
Дуга ВСД = дуга СД+дуга ВС=202+а+106-а =308 и соответствует 1/2 угла ВАД = 154
Дуга АДС = дуга АД + дуга СД = 52-а+202+а = 254 и соответствует 1/2 угла АВС = 127
углы четырехугольника = 26+53+154+127 = 360
Найбольший угол 154