Диагональ делит трапецию на два треугольника со средними линиями. В треугольнике средняя линия равна половине параллельной стороны. Задача 10. Больший из отрезков - половина от 10, т.е. 5. Задача 11.Меньший из отрезков - половина от 12, т.е. 6. Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10. В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10. В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22. В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия. Вроде все должно быть верно. Самое главное - путь к ответу.
Достроим этот треугольник до прямоугольника, чьи стороны будут находиться на контуре клетки.
Рассмотрим треугольник АDB:
Он прямоугольный, значит, по теореме Пифагора:
АВ²= DB² + AD² = 5² + 9² = 25 + 81 = 106
так как нам нужны суммы Квадратов сторон, значит оставляем
Аналогично рассмотрим треугольник ВЕС, угол Е также прямой,
ВС² = ВЕ² + ЕС² = 4² + 5² = 16 + 25 = 41
Рассмотрим треугольник АFC -> угол F прямой,
АС² = АF² + FC² = 9² + 4² = 81 + 16 = 97
Теперь сложим всё:
АВ² + АС² + ВС² = 106+41+97 = 244, если не ошибаюсь