1) 9 2) 5 и 8 3) 10 + 2/7 и 17 + 2/7
Объяснение:
1. В треугольниках ABC и PBK угол B - общий; углы BPK и BAC равны, как соответственные углы при PK // AC и секущей AB. Поэтому треугольники ABC и PBK подобны по двум углам. BK / BC = PK / AC. BK = BC - KC = 8, т.е. 6 / AC = 8 / 12; AC = 9.
2. Пусть первая высота равна х, вторая - у, тогда площадь параллелограмма равна 10х, она же равна 16у, причём х + у = 13, по условию. Это система уравнений. Выразим у через х: х = 13 - у, из первого уравнения 130 - 10у = 16у; 26у = 130; у = 5 - одна из высот; х = 13 - 5 = 8 - вторая.
3. Пусть это секущие AB и AC, внешняя часть первой секущей - AD, второй - AE. Тогда пусть AD = x тогда AE = x - 1. По теореме о секущих, произведения секущих на их внешние стороны равны. x * AB = (x - 1) * AC; x(x + 8) = (x - 1)(x + 16)
x^2 + 8x = x^2 + 15x - 16; 7x = 16; x = 2+2/7; AB = 10+2/7; AC = 17+ 2/7
Пусть имеем треугольник ABC, CH- высота и CM - медиана
Угол МСН = 76 градусов по условию задачи
В прямоугольном треугольнике СMN cумма острых углов СМН, МСН равна 90 градусов, то есть угол СМН = 90 – угол МСН = 90 – 76 = 14 градусов
Треугольник АМС равнобедренный, СМ равна половине гипотенузы , а АМ равна половине гипотенузы, так как СМ - медиана. Отсюда следствие, что угол САM равен углу АСМ по свойству углов при основании равнобедренного треугольника.
Угол AMC = 180-14=166 градуса
Угол СAM +угол MCA=180-166=14
Угол СAM =угол MCA=14/2=7 градусов
Угол СBA=90-7=83 градуса
Больший угол равен 83 градуса.