1)Так как это высота то он угол OAP равен 90гр , если AOP равен 15 гр то APO равен 75 гр .Угол OHK=APO=75
2) Диагонали ромба пересекаются под прямым углом тогда другой из углов равен 90-16'5=73'5. То есть углы равны по два 16'5*2=33 гр и по два. 73'5*2=147 гр . 3) Продлим перпендикуляр на на его же длину , то есть получим длину того же перпендикуляра только в два раза больше , так как он равен высоте проекций точки пересечения диагоналей , значит надо от этого перпендикуляра , перпендикулярна ей построить такую же прямую ,получим первую сторону , для остальных трёх надо проделать ту же операцию , получим квадрат.
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
2) Диагонали ромба пересекаются под прямым углом тогда другой из углов равен 90-16'5=73'5. То есть углы равны по два 16'5*2=33 гр и по два. 73'5*2=147 гр . 3) Продлим перпендикуляр на на его же длину , то есть получим длину того же перпендикуляра только в два раза больше , так как он равен высоте проекций точки пересечения диагоналей , значит надо от этого перпендикуляра , перпендикулярна ей построить такую же прямую ,получим первую сторону , для остальных трёх надо проделать ту же операцию , получим квадрат.