Сначала найдем боковую сторону а = АВ = АС.
2*S = a^2*sin(45); 18*корень(2) = a^2*корень(2)/2; a = 6.
Пусть середина АС - К. Тогда ОК перпендикулярно АС (центр описанной окружности равноудален от концов АС, поэтому лежит на перпендикуляре из середины АС...)
Поэтому АК = 3 и треугольник АКМ прямоугольный равноберенный (угол 45 при основании), то есть МК = 3, АМ = 3*корень(2); CM = 6 - 3*корень(2);
Треугольники ВСМ и ВАС имеют общую вершину и высоту из этой вершины, поэтому
SBCM = S*MB/AB = 9*корень(2)*(1 - корень(2)/2) = 9*(корень(2) - 1)
Решение: Пусть D– основа перпендикуляра, опущенного с точки А на прямую.
Тогда (1 случай) Точки М и С лежат в одной полуплоскости относительно прямой AD на прямой СМ.
АМ = 10 см, АС = 4√5 см, MD=6 см.
По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.
По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.
МС=MD-CD=6-4 =2 см
ответ: 4 см, 2 см.
Тогда (2 случай) Точки М и С лежат в разных полуплоскостях относительно прямой ADна прямой СМ.
АМ = 10 см, АС = 4√5 см, MD=6 см.
По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.
По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.
МС=MD+CD=6+4 =10 см
ответ: 4 см, 10 см.