Концы хорд соединяем с центром окружности. Получаем два равнобедренных треугольника с вершинами в одной точке - центром окружности. Стороны равнобедренных треугольников = радиусу.
Из середины равнобедренных треугольников проводим медианы, которые являются высотами. Прямая соединяющая хорды перпендикулярна к ним и проходит через центр окружности.
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.
Как известно, перпендикуляр, опущенный из центра окружности на хорду, делит ее пополам.
Значит перпендикуляр точно проходит через центр (по условию он хорду делит пополам ).
Прямые паралельны, значит их перпендикуляр совпадает и проходит через центр