Дано: ав и сд диаметры окружности Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД: Они равны по двум сторонам и углу между ними т.к. ав диагональ значит ао=ов как радиус окружности сд диагональ, значит со=од как радиус окружности угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов ∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав: углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.
Пусть дан ромб ABCD, проведем из вершины C высоту CH ромба. Площадь ромба = a*(CH), где а - это длина стороны ромба. Понятно, что относительно прямой AD, CD - это наклонная, а CH- перпендикуляр. И CD>=CH. Понятно, что чем больше высота (CH) тем больше площадь ромба, сторона же ромба по условию является константой. CH<=CD. Тогда предельный случай когда CH=CD=а - это случай когда точки H и D совпадают, то есть отрезки CH и СD совпадают. То есть наклонная сама является перпендикуляром. Тогда СH=a, а ромб в этом случае является квадратом, т.к. его стороны перпендикулярны (в этом случае). и площадь это квадрата будет a*a = a^2.
Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД:
Они равны по двум сторонам и углу между ними т.к.
ав диагональ значит ао=ов как радиус окружности
сд диагональ, значит со=од как радиус окружности
угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов
∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав:
углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников
по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.