Шаг 1. Чезез точки U и V, которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка T лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой UV, которая также принадлежала бы основанию. Для этого проводим прямую CD, и находим точку ее пересечения с прямой UV – W.
Шаг 2. Проводим прямую WT, принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра AD – X.
Шаг 3. Точка V лежит в задней грани, поэтому надо бы найти точку прямой WT, которая принадлежала бы плоскости задней грани. Для этого проведем прямую BC, которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой WT – Y. Через две точки задней грани проводим прямую YV, и находим место пересечения этой прямой с ребром BB_1 – Z.
Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.
Сказка о треугольниках Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры Меня знает каждый школьник, И зовусь я треугольник. У меня вершины три, Также три и стороны. Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным. Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить. Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам! Все также скачет по углам Веселая, смешная крыса. Мы делим радость пополам, А делит угол биссектриса. Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы: -если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны; - если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны; - если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны. Много времени проводят вместе друзья и встречают новых измени немного текст под себя
Объяснение:
Шаг 1. Чезез точки U и V, которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка T лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой UV, которая также принадлежала бы основанию. Для этого проводим прямую CD, и находим точку ее пересечения с прямой UV – W.
Шаг 2. Проводим прямую WT, принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра AD – X.
Шаг 3. Точка V лежит в задней грани, поэтому надо бы найти точку прямой WT, которая принадлежала бы плоскости задней грани. Для этого проведем прямую BC, которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой WT – Y. Через две точки задней грани проводим прямую YV, и находим место пересечения этой прямой с ребром BB_1 – Z.
Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.