Признак равенства прямоугольных треугольников : Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие прямоугольные треугольники равны.
Объяснение:
Обозначим вторую точку пересечения ОВ с окружностью -Д.
∠ВАД и ∠ВСД-вписанные опираются на полуокружность( гр.мерой 180) , т.к. ВД диаметр .Значит они равняются половине дуги на которую опираются, т.е ∠ВАД =∠ВСД=90.
Прямоугольные треугольники ΔВАД= ΔВСД по катету и гипотенузе :гипотенуза ВД-общая, катеты АВ=ВС по условию.
Т.к. треугольники равны, то в равных треугольниках соответственные элементы равны: значит ∠1=∠2
См. Объяснение
Объяснение:
В прикреплении - рисунок: в окружность вписан правильный треугольник, на стороне этого треугольника построен квадрат.
Примечание: все размеры на рисунке уменьшены в 2 раза.
Действительные размеры:
диаметр окружности = 16 см (на рисунке = 8 см);
сторона вписанного треугольника = (радиус 8) *√3 ≈ 13,86 см (на рисунке = 6,93 см);
сторона квадрата = стороне вписанного треугольника = 13,86 см (на рисунке 6,93 см);
дальше не совсем понятно, радиус какой окружности надо найти: если описанной около квадрата, то радиус такой окружности равен половине диагонали квадрата, которая, в свою очередь равна =
√[(8 *√3)² + (8 *√3)²] = √ (64*3 + 64*3) = √ 384 = √(64*6) = 8√6 ≈ 19,6 см (на рисунке 9,8 см);
соответственно радиус окружности, описанной около квадрата, равен
(8√6)/2 = 4 √6 ≈ 9,8 см.
пусть угМРК = х , тогда угКРН=4х , но угМРН=угМРК+угКРН =105*
х + 4х = 105*
х=угМРК= 21*