Раз трапеция равнобедренная, то и диагонали равны (ну рассмотрите пару треугольников, образованных РАЗНЫМИ ДИАГОНАЛЯМИ, большим основанием и боковой стороной, из их равенства по 2 сторонам и углу между ними следует и равенство третьих сторон, то етсь диагоналей).
Типовое построение - проводим через вершины малого основания прямую II диагонали, НЕ проходящей через эту вершину, до пересечения с продолжением большого основания. Получается треугольник, РАВНОВЕЛИКИЙ (имеющий ту же площадь) трапеции (у него основание равно сумме оснований трапеции, а высота - общая с трапецией).
Этот треугольник В ДАННОМ СЛУЧАЕ равнобедренный прямоугольный с гипотенузой 64. Поэтому его площадь равна 32*64/2 = 1024
(32 - это высота, она же медиана к гипотенузе, равна половине гипотенузы)
6 см
Объяснение:
Задание
К окружности с центром О проведена касательная MN (M - точка касания). Найдите отрезок MN, если ON = 12 см и угол NOM = 30 градусов.
Решение
1) Так как касательная перпендикулярна к радиусу окружности в точке касания, то ∠NMO = 90°.
2) В прямоугольном треугольнике NMO сторона NO = 12 см является гипотенузой, а MN - является катетом, который лежит против угла NOM, равного 30 градусам.
Так как катет, лежащий против угла 30 градусов, равен половине гипотенузы, то:
МN = 12 : 2 = 6 см
ответ: МN = 6 см.