Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
Задача может решать двумя 1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить. 3х - 1 сторона. 4х - 2 сторона. 5х - 3 сторона. 48 см - Р данного треугольника. Составим и решим уравнение: 3х+4х+5х = 48; 12х = 48; х = 4. 3×4=12 (см) - 1 сторона. 4×4=16 (см) - 2 сторона. 5×4=20 (см) - 3 сторона. 1.12÷2 = 6 - середина 1 отрезка. 2.16÷2 = 8 - середина 2 отрезка. 3.20÷2 =10. - середина 3 отрезка. 4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон. ответ: 24. 2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь: 48÷2 = 24. ответ: 24. Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.
Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
√(8² + (8√3)²) = √(64 + 64 * 3) = √(64 * 4) = 8 * 2 = 16.
ответ: длина гипотенузы равна 16.