Прямая проходит через точки (−1;−2) и (−2;−1). Определи коэффициенты в уравнении этой прямой. (Если коэффициенты отрицательные, вводи их вместе со знаком «−», без скобок.) 1+ + =0
Допустим, что вторая сторона четырёхугольника равна Х см. Тогда исходя из условия задачи первая сторона = вторая сторона + 8см = Х+8 см; третья сторона = первая сторона +8 см = Х+8 см (это размер первой стороны) + 8 см=Х+16см четвертая сторона= 3* вторую сторону= 3*Х см. Периметр четырехугольника равен суме его сторон, значит первая сторона+вторая сторона+третья сторона+четвертая сторона=66 см Х+8 + Х+ Х+16+3*Х =66 6Х+24=66 6х=42 х=42/6 х=7 см - это размер второй стороны.
первая сторона = Х+8 =7+8=15 см; третья сторона = Х+16=7+16=23 см четвертая сторона= 3*Х =3*7=21 см.
ответ: стороны четырёхугольника равны 15 см, 7 см, 23 см, 21 см
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
Тогда исходя из условия задачи
первая сторона = вторая сторона + 8см = Х+8 см;
третья сторона = первая сторона +8 см = Х+8 см (это размер первой стороны) + 8 см=Х+16см
четвертая сторона= 3* вторую сторону= 3*Х см.
Периметр четырехугольника равен суме его сторон, значит
первая сторона+вторая сторона+третья сторона+четвертая сторона=66 см
Х+8 + Х+ Х+16+3*Х =66
6Х+24=66
6х=42
х=42/6
х=7 см - это размер второй стороны.
первая сторона = Х+8 =7+8=15 см;
третья сторона = Х+16=7+16=23 см
четвертая сторона= 3*Х =3*7=21 см.
ответ: стороны четырёхугольника равны 15 см, 7 см, 23 см, 21 см