Тк ABCD - ромб, то все стороны = 10 см. угол А =С=60 градусам, угол В=D=120 градусам. BD - диагональ = 10 см. В ромбе диагонали перпендикулярны, точкой пересечения делятся пополам, являются биссектрисами углов; следовательно угол DBC = 60 градусам. О - точка пересечения диагоналей, ВО=ОD=5 см. Треуг. BOC - прямоугольный, значит СО можно найти по т. Пифагора. Диагональ СA = 2СО. Потом просто находишь по формуле площадь ромба ( площадь ромба равна полусумме произведения его диагоналей)
В расчетах могла ошибиться, но ход решения должен быть верный.
1) a+b = 180 градусов, b = a-40 градусов, a+(a-40) = 180, 2a = 180+40 = 220, a = 220/2 = 110, b=110 - 40 = 70. ответ. 110 градусов. 2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!). Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем. 15*15 = t*9t, 15^2 = 9(t^2) = (3t)^2, 3t = 15; t = 15/3 = 5 см. D = t + 9t = 10t = 10*5 = 50 см. ответ. 50 см.
Тк ABCD - ромб, то все стороны = 10 см. угол А =С=60 градусам, угол В=D=120 градусам. BD - диагональ = 10 см. В ромбе диагонали перпендикулярны, точкой пересечения делятся пополам, являются биссектрисами углов; следовательно угол DBC = 60 градусам. О - точка пересечения диагоналей, ВО=ОD=5 см. Треуг. BOC - прямоугольный, значит СО можно найти по т. Пифагора. Диагональ СA = 2СО. Потом просто находишь по формуле площадь ромба ( площадь ромба равна полусумме произведения его диагоналей)
В расчетах могла ошибиться, но ход решения должен быть верный.