Обозначим трапецию как ABCD. Сторона перпендикулярная основаниям АВ, ВС - верхнее основание, AD - нижнее основание, CD - большая боковая сторона. Опустим перпендикуляр из вершины С к основанию AD и отметим точку пересечения как Е. Получили прямоугольный треугольник СЕВ. По теореме Пифагора находим СЕ СЕ²=CD²-DE² DE=AB-AE (а АЕ=ВС, так как трапеция прямоугольная) DE=17-5=12 см CE²=15²-12²=81 см Теперь из треугольника АВС можем найти диагональ АС по теореме Пифагора: АС²=АВ²+ВС² AB=СЕ, поэтому можем записать АС²=АВ²+СЕ² АС²=81+5²=81+25=106 АС=√106
Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см
Объяснение:
ΔАВС равнобедренный по условию, значит углы при основании равны.
∠С=∠А=42°