180 см2
Объяснение:
Пусть ВС-малое основание, AD-большое основание р/б трапеции. Вписанная окружность касается сторон АВ, ВС, СD, AD в точках M,N,P,Q соответственно. Т.к. трапеция р.бокая, то AB=CD. BM=BN=CN=CP=3-по свойству касательных к окружности.
AM=AQ=DQ=DP=12-по свойству касательных к окружности. Отсюда ВС=3+3=6, AD=12+12=24
Проведем высоты ВВ1 и СС1 к AD. BC=B1C1=6. AB1=(AD-B1C1)/2=9
Тр-к ABB1-прямоугольный. по. Пифагора: BB1=sqrt(AB^2 - AB1^2)=sqrt(225-81)=12
S=1/2*(BC+AD)*BB1=1/2*(6+24)*12=180 см2
Найти: проекцию меньшего катета на гипотенузу.
Решение:
--- 1 ---
Гипотенуза по т. Пифагора
√(7² + 24²) = √(49 + 576) = √625 = 25
--- 2 ---
Площадь треугольника АСД через катеты
S = 1/2*7*24 = 7*12 = 84 см²
Площадь треугольника АСД через гипотенузу и высоту
S = 1/2*25*ВД = 25/2*ВД
Приравниваем
25/2*ВД = 84
ВД = 168/25
--- 3 ---
В ΔАВД по т. Пифагора
7² = (168/25)² + АВ²
АВ² = (7*25/25)² - (168/25)² = (175/25)² - (168/25)² = (175 - 168)(175 + 168)/25² = 7*343/25² = 49²/25²
AB = 49/25
Всё :)