Например, для ∠A∠A, внешними будут углы ∠1∠1 и ∠2∠2 (см. рис.)

Свойства внешних углов треугольника
Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360∘360∘.
Сумма внешнего и внутреннего угла при одной вершине равна 180∘180∘.
Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
∠1=∠B+∠C∠1=∠B+∠C
Примеры решения задач
Задание. В треугольнике ΔMNKΔMNK, внешний угол ∠M∠M равен 120∘120∘, а угол ∠N=65∘∠N=65∘. Найти угол ∠K∠K.
Решение. По теореме о внешнем угле∠M=∠N+∠K∠M=∠N+∠K. Подставляя в это равенство исходные данные, получим
120∘=65∘+∠K120∘=65∘+∠K
Выразим ∠K:∠K=120∘−65∘⇒∠K=55∘∠K:∠K=120∘−65∘⇒∠K=55∘
ответ. ∠K=55∘∠K=55∘
Задание. Внешние углы при двух вершинах треугольник равны 70∘70∘ и 150∘150∘. Найти внутренний угол при третьей вершине.
Решение. Обозначим внешние углы ∠1,∠2,∠3∠1,∠2,∠3, а соответствующие им внутренние -
Вступление:
Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=19см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.
H∈DC, BH⊥DC ⇒ BH=AD=19см.
В прямоугольном ΔBHC:
∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.
DH=DC-HC=31-19=12см.
В четырёхугольнике ABHD:
∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.
Получается ABHD - прямоугольник, поэтому AB=HD, HD=12см ⇒ AB=12см.
AB мень. осн. т.к. CD - большее.
Меньшее основание равно 12см.