1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О).
Точка О является центром вписанной и описанной окружностей.
Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC).
Радиус вписанной окружности треугольника оN = DO = 6.
Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12.
Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2.
Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6.
Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.
Рішення.
Вирішимо задачу шляхом додаткового побудови навколо заданої геометричної фігури (трикутники), щоб використовувати властивості нової утвореної фігури (прямокутники) для рішення цієї задачі з геометрії.
Спочатку добудуємо прямокутний трикутник до прямокутника.
В результаті додатковой побудови катети прямокутного трикутника одночасно є сторонами прямокутника, а гіпотенуза - його діагоналлю.
Далі врахуємо наступні властивості трикутника і прямокутника:
Сума кутів трикутника дорівнює 180 градусамДіагоналі прямокутника в точці перетину діляться навпілДіагоналі прямокутника рівні
Величина одного з кутів трикутника задана в умові задачі. Оскільки трикутник за умовами прямокутний, то ми можемо знайти величину третього кута, знаючи, що сума кутів трикутника дорівнює 180 градусам.
Оскільки кут CAB = 20°, то кут ABC = 180 - 90 - 20 = 70°
Таким чином, ми знайшли градусну міру кута B у трикутнику ABC.
Розглянемо трикутник COA. Він рівнобедрений, так як його сторони - це половини діагоналей прямокутника. Це випливає з властивостей прямокутника. Так як діагоналі прямокутника рівні, а в точці перетину вони діляться навпіл, то половини рівних відрізків будуть також однакові. Оскільки в равнобедренном трикутнику кути при основі рівні, то:
∠OCA = ∠OAC = 20º
Розглянемо трикутник BKC. CK є висотою трикутника ABC, проведеної до гіпотенузи. Значить кут BKC - прямий, тобто дорівнює 90 градусам, а сам трикутник BKC - прямокутний. Оскільки трикутник BKC - прямокутний, то кут BCK = 180 - 90 - 70 = 20° . (Це випливає з того, що сума кутів трикутника 180 градусів, кут BKC - прямий, а величину кута B ми знайшли раніше)
Оскільки кут BCA - прямий, то його градусна міра дорівнює 90 градусів і, одночасно, дорівнює сумі градусних мір складових його кутів: BCK, KCO та OCA.
Величину кута BCK ми тільки що знайшли, вона становить 20 градусів, величину кута OCA ми також знайшли раніше і вона теж становить 20 градусів.
Звідки:
20° + 20° + ∠KCO = 90°
∠KCO = 50°
Відповідь: Кут між медіаною і бісектрисою заданого прямокутного трикутника дорівнює 50 градусів.
Объяснение: