Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Н - 7см -высота пирамиды D - диагональ квадратного основания L - боковое ребро α = 45гр. - угол между боковым ребром L и диагональю D a - сторона квадрата, лежащего в основании пирамиды А - апофема (высота боковой грани) Площадь одной боковой грани равна S = 0.5a·A. Боковых граней - четыре, поэтому площадь боковой поверхности равна S = 4·0.5a·A S бок= 2а·А Видим, что следует найти сторону а и апофему А. Половина диагонали квадратного основания 0,5D, высота пирамиды Н и боковое ребро образуют прямоугольный треугольник (L - гипотенуза).с углом αмежду L и 0,5D/ Поскольку один угол тр-ка равен 90гр., другой - 45гр., то третий угол тоже равен 45 гр., то тр-к равнобедренный, и 0,5D = H = 8см. вся диагональ D = 2·8 = 16см. Диагональ квадрата равна D = a√2, откуда сторона квадрата равна а = D/√2 = 16/√2 или а = 8√2 см. Высота пирамиды Н, апофема А и половина стороны квадрата 0,5а образуют прямоугольный тр-к с гипотенузой А. Найдём А по теореме Пифагора: А² = (0,5а)² + Н² А² = (4√2)² + 8² = 32 + 64 = 96 А = √96 А = 4√6 см. S бок = 2·(8√2)·(4√6) = 64√12 = 128√3 (см²) ответ: 128√3 см²
7к+8к=180
15к=180
к=12
12*7=84 градуса (угол, который 7к)
12*96 градусов.
ответ: 84 и 96