Даны параллельные плоскости α и β. Точки A и B находятся в плоскости β, а точки C и D — в плоскости α. Длина отрезка AC= 16, длина отрезка BD= 12. Сумма проекций этих отрезков на плоскости α равна 14.
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести AE и BF к плоскости α.
2. AE и BF .
3. AE и BF как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF. Длина CE= .
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Треугольник АБС - прямоугольный. Если АС=ВС, а гипотенуза не может быть равна катету, то АС и БС - актеты, угол С прямой, АВ- гипотенуза. Проведем высоту СН, равную 18 см., к АВ. СН перпендикулярна АВ, т.е угол СНВ=90, угол СНА=90. Раз АС=ВС, то треугольник равнобедренный, углы А и В равны по 45 каждый (90:2=45). Рассмотрим треугольник АНС. угол НАС=45, угол СНА=90. улол АНС=90-45=45. и равен углу НАС, значит треугольник равнобедренный и АН-СН=18. Рассмотрим треугольник СНВ. угол СВН так же равен 45, уголСНВ прямой. угол НСВ=90-45=45. треугольник равнобедренный. СН=ВН=18. Отсюда гиппотенуза АВ=АН+НВ=18+18=36см
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.