М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
максим1723
максим1723
18.04.2023 23:41 •  Геометрия

Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 17 см, а сторона основания AE= 16 см. К этой плоскости проведены перпендикуляр CB, который равен 7 см, и наклонные CA и CE. Вычисли расстояние от точки C до стороны треугольника AE.

👇
Ответ:
оля1890
оля1890
18.04.2023
Добрый день!

Чтобы решить эту задачу, нам нужно использовать свойства равнобедренного треугольника. Давайте посмотрим, что у нас есть:

- Равнобедренный треугольник ABE с боковыми сторонами, равными 17 см.
- Сторона основания AE равна 16 см.
- Проведен перпендикуляр CB, который равен 7 см.

Нам нужно найти расстояние от точки C до стороны AE. Пусть это расстояние обозначается как x.

Поскольку треугольник ABE равнобедренный, то боковые стороны AE и BE равны друг другу. Зная это, мы можем разделить сторону основания AE пополам и получить отрезки AC и CE.

Отрезок AC будет равен половине стороны основания AE, то есть AC = AE/2. Подставляя значение, получаем AC = 16/2 = 8 см.

Мы также знаем перпендикулярный отрезок CB, который равен 7 см.

Теперь мы можем использовать теорему Пифагора, чтобы найти расстояние от точки C до стороны AE. По теореме Пифагора сумма квадратов катетов равна квадрату гипотенузы.

В данном случае мы можем считать отрезки AC и CB катетами, а отрезок x (расстояние от C до стороны AE) будет гипотенузой. Имеем AC^2 + CB^2 = x^2.

Подставляя значения, получаем 8^2 + 7^2 = x^2.

64 + 49 = x^2.

113 = x^2.

Чтобы найти значение x, нужно извлечь квадратный корень из обеих сторон уравнения:

√113 = √x^2.

√113 ≈ 10,63 см ≈ x.

Таким образом, расстояние от точки C до стороны треугольника AE составляет около 10,63 см.

Надеюсь, ответ был понятен. Если у вас возникнут еще вопросы, не стесняйтесь задавать!
4,4(98 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ