Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Рассмотрим треугольники BHC и KBC; У них равны углы HCB и KBC; Известно, что BK=HC; Заметим, что BK/BC = HC/BC так как BK = HC; Значит эти треугольники подобны. BHC - прямоугольный, значит BKC - тоже прямоугольный с прямым углом BKC; То есть BK и медиана и высота, но еще и биссектриса. Значит углы ABK и KBC равны; Треугольники HBO и KOC подобны (прямые углы и HOB = KOC как вертикальные). Значит угол HBO равен углу HCA; Значит HC - высота и биссектриса. С одной стороны, AB = BC, поскольку BK - высота, биссектриса и медиана, с другой BC = AC, поскольку CH - высота, биссектриса и медиана. Значит AB = BC = AC, что означает, что треугольник равносторонний
т.к. AK и DM биссектрисы ⇒ AB=BM, CD=KM
пусть AB=x, тогда BC=x+x+2=2x+2
P=2(a+b)
64=2*(x+(2x+2)
64=2x+4x+4
6x=60
x=10
AB=10
BC=2*10+2=22
Проверка: 2*(10+22)=64, 64=64