В разных сторонах от прямой даны точки А и В на расстояниях 9,8 см и 4,4 см от прямой соответственно. Определи расстояние серединной точки Сотрезка АВ до прямой, ответ: расстояние от точки С до прямой равно авно- CM.
Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.