Первый треугольник h -высота v и w - углы треугольника
второй треугольник h1 - высота v1 и w1 - углы треуг.
h=h1 v=v1 w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг.) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т.к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны).
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам
∠КВС = 108° - внешний угол ΔАВС при вершине В, он равен сумме внутренних углов треугольника не смежных с ним:
∠А + ∠С = 108° (1)
∠DCB = 137° - внешний угол ΔАВС при вершине C, он равен сумме внутренних углов треугольника не смежных с ним:
∠А + ∠B = 137° (2)
Cложим выражения (1) и (2)
∠А + ∠А + ∠В + ∠С = 108° + 137°
∠А + (∠А + ∠В + ∠С) = 245° (3)
Сумма внутренних углов треугольника равна 180°, то есть
∠А + ∠В + ∠С = 180°
Тогда выражение (3) примет вид
∠А + 180° = 245°
и
∠А = 245° - 180°
∠А = 65°.
Из выражения (1):
∠С = 108° - ∠А = 108° - 65°
∠С = 43°.
Из выражения (1):
∠В = 137° - ∠А = 137° - 65°
∠В = 72°.