Если я правильно поняла, что именно нужно найти.
-------------------------------------------------------------------------------------
Сделаем к задаче рисунок.
Обозначим точку пересечения биссектрис Δ АВС ( в котором ∠ С равен 61°) буквой М.
Рассмотрим треугольник АВМ.
∠ МАВ = ½ ∠ ВАС,
∠ АВМ = ½ ∠ АВС, тогда ∠ АМВ =180° -½ (∠ АВС + ∠ ВАС).
Острый угол между биссектрисами на рисунке обозначен ɣ.
Угол ɣ смежный с углом АМВ, следовательно, ɣ = ½ (∠ АВС + ∠ ВАС).
Поскольку ∠С треугольника АВС =61°, то ∠ АВС + ∠ ВАС = 119°.
Тогда ɣ =½ (∠ АВС + ∠ ВАС) = 119° : 2 = 59,5°
ответ: 59,5°
------------
Вариант решения.
Сумма углов ВАС+АВС равна внешнему углу при ВСА ( по теореме о внешнем угле треугольника)
(∠САВ+∠АВС)=180°-61°=119°
Тогда их полусумма равна
119°:2=59,5°
Искомый угол - это угол гамма на приложенном рисунке.
Он является внешним углом при вершине М треугольника ВМА и равен сумме углов, не смежных с углом АМВ. Т.е. угол γ равен полусумме углов ВАМ и АВМ .
Острый угол,образованный между сторонами и биссектрисами его остальных углов=59,5°
Пусть через вершину C проведена прямая, параллельная AB, и A2 - это точка пересечения этой прямой c продолжением прямой AA1;
Сразу видно две пары подобных трегольников
Треугольник APC1 подобен треугольнику A2PC; что означает
CA2/AC1 = CP/PC1;
Треугольник AA1B подобен треугольнику CA1A2, что означает
CA1/A1B = CA2/AB = CA2/(2*AC1) = (1/2)*CP/PC1;
То же самое можно сделать "с другой стороны медианы" (отметить на CA2 точку B2 пересечения с прямой BB1, и рассмотреть аналогичную пару подобных треугольников. Однако можно и это не делать - у вершин A и B можно просто поменять местами обозначения A <=> B)
то есть
CB1/B1A = (1/2)*CP/PC1 = CA1/A1B;
то есть A1B1 II AB по теореме Фалеса (ну, или в силу доказанного подобия треугольников ABC и A1B1C, если хотите).