Площадь полной поверхности призмы есть сумма площадей боковой поверхности + две площади основания.
1) Площадь боковой поверхности: S(бок.) = 3 * (8 * 12) = 288 (см^2)
2) Две площади основания: у нас в основания равносторонний треугольник, а его площадь нахоидтся по формуле (а^2 * корень из 3) / 4, где а - это сторона треугольника. Подставим: (8^2 * корень из 3) / 4 = (64 * корень из 3) / 4 = 16 корней из 3. У нас два основания, значит 2*S(осн.) = 32 корня из 3
3) Теперь просто складываем получившиеся площади: 288 + 32 корня из 3 = 32*(9 + корнеь из 3) - это и есть ответ)
Площадь цилиндра равна сумме площадей двух оснований + площади боковой поверхности.
1) Площадь двух оснований(окружностей): 2*S(осн.)=2*Пи*R^2
2) Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту цилиндра: S(бок.) = 2*Пи*R * 10R
3) У нас известна площадь полной поверхности, равная сумме площадей боковой поверхности и двух оснований. Подставляем:
144*Пи = 2*Пи*R^2 + 2*Пи*R*10R = R*(2*Пи*R + 20*Пи*R) = R * 22*Пи*R = 22*Пи*R^2
===> откду выражаем: R^2 = (144*Пи) / 22*Пи ==> Пи сокращаются ==> Остаётся: R^2 = 144/22 ==> R = 12/корень из 22 ==> высота в 10 раз больше, значит она равна: 120/корень из 22
**От корней в знаменателе надо избавляться, тогда воспользуемся тем, что дробь не изменится, если мы знаменатель и числитель умножим на одинаковое число: домножим на корень из 22, получим: R = (12 корней из 22) / 22 = (6 корней из 22) / 11 ==> откуда высота равна: (60 корней из 22) / 11