В треугольнике ABC проведена биссектриса BK. ∠BAC=20°; ∠BCA=60°; AK=3 см. Выполните рисунок и найдите следующие элементы: длину биссектрисы BK; ( ) длину наибольшей стороны треугольника. ( )
Координатные векторы: Угол между заданным вектором а(2;1;2) и координатными: Угол между а и равен α = arc cos(2/3) = 0,84106867 радиан = 48,1896851 градуса (программа Excel или калькулятор). Можно выразить угол в градусах и минутах. Так как 1 градус = 60 минут, то дробную часть угла в градусах умножаем на 60 и выделяем целую часть, так же определяем и секунды. α = 48°11'23''.
β = arc cos(1/3) = 1,23095942 радиан = 70,5287794°. Или в градусах и минутах β = 70°31'44''. Угол гамма равен arc cos(2/3) и равен углу альфа.
1)Прямоугольник это параллелограмм.У параллелограмма стороны попарно равны и параллельны. Т.е. их векторы равны (вектор AB=векторуDC). Почему не CD?Потому что они должны быть сонаправлены.Не, ну можно конечно взять и CD, но не пугайтесь, если выйдут векторы с противоположными знаками. Итак, вектор AB={0+6; 5-1}={6;4} DC={0-6; -8+4}={-6;-4} не порядок...тогда фигура должна быть не ABCD. а ABDC...уточните это у учителя но меня это не остановит!Извините, что так много пишу. AB=CD все-таки и ABCD у нас -параллелограмм. У прямоугольника диагонали равны. т.е. AC=DB это отрезки, не векторы АС=V(6+6)^2+(-4-1)^2 (V-корень квадратный) т.е. АС=13 BD=V0+(-8-5)^2 BD=13 AC=BD что и требовалось доказать. 2)Пересечение диагоналей, это их середина в прямоугольнике ⇒ вектор АО={6;-2,5} (вектор AC/2) т.е х+6=6⇒х=0; у-1=-2,5⇒у=-1.5 (это я представила вектор как разность координат А и О(х;у)) О(0;-1,5)
Биссетриса-1,3
AC(самая большая сторона)-4,2
Объяснение: