В любом параллелограмме стороны попарно равны и параллельны: АВ=СД, ВС=АС
Зная, что АС||ВД, можем утверждать, что:
Угол А+угол Б=180 градусов (смежные углы при АС||ВД и секущей АВ)
Пусть угол В=х, тогда угол А=х+20 (из условия).
Составим уравнение.
х+х+20=180
2х=160
х=80
Итак, угол В=80 градусов, а мы знаем, что в каждом параллелограмме противоположные углы равны, отсюда: угол В=угол Д=80 градусов
Найдём угол А: 180-угол В=180-80=100 градусов. Аналогично: угол А=угол С=100 градусов
ответ: угол А=100 градусов
угол В=80 градусов
угол С=100 градусов
угол Д=80 градусов
ответ: 12 (ед. длины)
Объяснение:
Одна из формул биссектрисы треугольника
L={2ab•cos(0,5γ)}:(a+b) ,
где L биссектриса, а и b- стороны, γ - угол между ними.
На приведенном рисунке АК - биссектриса ∆ АВС, АС=а, АВ=6, угол А=γ =120°
cos0,5γ=cos60°=1/2
4=2a•6•0,5/(a+6) =>
4a+24=6a =>
АС=a=12 (ед. длины)
Или с тем же результатом найти:
1) По т. косинусов из ∆ АКВ найти КВ
2) по т. синусов из ∆ АКВ угол В
3) из суммы углов треугольника угол С
4) по т. синусов вычислить длину искомой стороны АС