РЕШИТЕ Контрольная работа.
Задача №1.
Классные помещения должны быть рассчитаны так, чтобы на одного учащегося приходилось не менее 6 м3 воздуха. Можно ли в класс, имеющий вид прямоугольного параллелепипеда с измерениями 8,3 м х 6,25 м х 3,6 м вместить 30 человек, не нарушая санитарной нормы?
Задача №2.
Вычислить объем правильной четырехугольной призмы со стороной основания 4 см и высотой 10 см
Задача №3.
Вычислить объем правильной треугольной призмы со стороной основания 10см и высотой 5 см.
Задача №4.
Вычислить объем прямоугольного параллелепипеда со сторонами основания 4 и 5 см и высотой 10 см. Чему будет равен объем равновеликой ему пирамиды?
Задача№5.
Хватит ли у вас сил поднять куб золота с ребром в 200 мм?
(ρ з ≈ 19,3г/см3).
Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам: ВО/ОД=ВС/СД=a*2/b.
ВД=ВО+ОД=ВО+b*BO/2a=BO(2a+b)/2a.
Тогда ВО/ВД=BO*2a/BO(2a+b)=2a/(2a+b).
Аналогично ВЕ/ЕА=ВС/АС=а/b. AB=BE+EA=BE+b*BE/a=BE(a+b)/a, значит ВЕ/АВ=а/(а+b). Площади Sabd=1/2*АB*BД*sin B, Sbeo=1/2*BE*BO*sin B.
Тогда Sbeo/Sabd=BE*BO/AB*BД=а/(а+b) * 2a/(2a+b)=2a²/(a+b)(2a+b).
Медиана разбивает треугольник на два треугольника одинаковой площади,
значит Sabc=2Sabd, Sabd=S/2.
Тогда Sbeo=S*a²/(a+b)(2a+b)
Площадь АДОЕ равна
Sадое=Sabd-Sbeo=S/2-S*2a²/(a+b)(2a+b)=S(1/2-2a²/(a+b)(2a+b))=S*b*(3a+b)/2(a+b)(2a+b).