Диагонали ромба делятся точкой пересечения пополам. (Потому что диагонали параллелограмма так делятся, а ромб - то же самое что и параллелограмм) И угол между ними равен 90 градусов. Тогда пусть точка пересечения диагоналей - О, пусть А - левая вершина ромба, С - правая, В - верхняя, Д - нижняя. (Ну нарисуй так). Тогда АО=12:2=6, ОД=9:2=4.5. Тогда по теореме Пифагора находим АД. АД=ДС (т.к. АВСД - ромб), теперь есть треугольник АСД в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2
AB = BN, значит ΔABN равнобедренный, углы при основании равны: ∠BAN = ∠BNA = (180° - 30°)/2 = 75°
∠NAD = 90° - ∠BAN = 90° - 75° = 15°
2. ∠BAF = ∠DAF так как AF - биссектриса, ∠DAF = ∠BFA как накрест лежащие при пересечении AD║BC секущей AF, ⇒ ∠BAF = ∠BFA, треугольник BAF равнобедренный, АВ = BF = 2 см
∠CFE = ∠AFB как вертикальные ∠CEF = ∠BAF как накрест лежащие при пересечении AB║CD секущей АЕ, ∠AFB = ∠BAF как доказано выше, ⇒ ∠CFE = ∠CEF, ⇒ треугольник CFE равнобедренный, CF = CE = 3 см
АВ = 2 см ВС = 2 + 3 = 5 см Pabcd = (AB + BC)·2 = (2 + 5)·2 = 14 см
3. В треугольнике АВЕ АВ = 5 см, АЕ = 3 см, ВЕ = 4 см, значит это прямоугольный (египетский) треугольник, значит ВЕ - высота трапеции. ЕВСК - прямоугольник (ВЕ = СК как высоты трапеции, ВЕ║СК как перпендикуляры к одной прямой), ⇒ ЕК = ВС = 6 см.
ВС = 6 см AD = 3 + 6 + 1 = 10 см
Sabcd = (AD + BC)/2 · BE = (10 + 6)/2 · 4 = 32 см²
в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2