Висоти паралелограма дорівнюють 5 см і 6 см, а сума двох його суміжних сторін - 22 см. Знайдіть площу паралелограма.
Высоты параллелограмма равны 5 см и 6 см, а сумма двух его смежных сторон - 22 см. Найдите площадь параллелограмма.
Пусть длина одной из неравных сторон параллелограмма x см ;
длина другой стороны будет (22-x) см .
Можем написать уравнение x*5 =(22-x)6 || =S ||
5x =22*6 - 6x ;
5x +6x =22*6 ;
11x =22*6 ;
x = 22*6 /11= 2*6 =12 (см). [ так и должно быть x > 22/2 =11 ; 12 > 11 ]
S =x*5 = 12*5 = 60 (см²)
ответ: 60 см² .
! 5a = 6b [ очевидно a > b ] a /b = 6/5
ah₁ =bh₂ ; a/b = =h₂/ h₁ обратная пропорциональность
Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.
1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):
(x – 2)² + (y – 1)² = 5²;
(x – 2)² + (y – 1)² = 25.
ответ: (x – 2)² + (y – 1)² = 25.
ΔABS - прямоугольный, BS=\sqrt{13^2-5^2}=12BS=
13
2
−5
2
=12 .
BC=AD=18 ---> CS=BC-BS=18-12=6
S= \frac{CS+AD}{2}\cdot AB=\frac{18+6}{2} \cdot 5=60S=
2
CS+AD
⋅AB=
2
18+6
⋅5=60