Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
В прямоугольном треугольнике ABC угол В равен 90°. BC равен 8 см, АС равна 16 см. Найдите углы, которые образует высота BH с катетами треугольника. ------------- Катет ВС равен половине гипотенузы АС, следовательно, противолежащий ему угол А равен 30° ( свойство). Сумма острых углов прямоугольного треугольника 90°⇒ ∠С=180°-30°=60° Высота из прямого угла к гипотенузе отсекает от исходного треугольника прямоугольный треугольник. В ∆ ВНС угол С=60° (найдено), -⇒∠НВС= 90°-60°=30° В ∆ ВНА угол А=30° (найдено), ⇒∠НВА=90°-30°=60°.