1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Теперь можно определить площади боковых граней.
Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².
Площадь основания Sо = (1/2)(9*12) = 54 см².
Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².
Объём пирамиды равен (1/3)*54*8 = 144 см³.
1. Р(АВД) = (АВ + АД) + ВД = 8
Но (АВ+АД) = Р(АВСД) /2 = 6 см
Тогда: 6 + ВД = 8
ВД = 2 см
2. Проводя отрезки, соединяющие середины сторон , мы тем самым проводим средние линии параллельные диагоналям 4 -ника и равные их половинам. Тогда понятно, что будет получаться:
а) параллелограмм
б) ромб (т.к. у прям-ка диагонали равны)
в) прямоугольник (т.к. у ромба диагонали перпенд-ны)
г) квадрат (это и ромб и прямоугольник в одном лице).
3. Эти треугольники равны по первому признаку равенства - по двум сторонам и углу между ними.
Другие два треугольника по той же причине - также равны между собой.
Опять Пифагор затесался, придется сделать, хотя задача устная.
Равнобедренная трапеция ABCD, AD = 18, ВС = 8, можно вписать окружность. Поэтому боковая сторона равна (18 + 8)/2 = 13.
Проводим высоту ВН. Ясно ,что АН = (18 - 8)/2 = 5.
Треугольник АВН - пифагоров (5, 12, 13), то есть высота трапеции 12,
площадь трапеции S = 13*12 = 156.
Периметр P = 13*4 = 52;
радиус вписанной окружности 2*S/P = 2*13*12/(13*4) = 6;