Пусть треугольник с углом А = 90 и основанием АС. Угол ВСА = 45 градусов. косинус угла 45 = АС : ВС ( прилежащий катет к гипотенузе ) косинус 45 = корень из 2 : 2 корень из 2 : 2 = АС : 10 АС = (10* корень из 2) : 2 = 5 корней из 2 По теореме Пифагора найдем ВА ВА^2 = 100 - 50 ВА=корень из 50 = 5 корней из 2 Площадь прямоугольного треугольника равна 1/2 произведения катетов ( 1/2 *a*b ) ВА и АС - катеты, ВС - гипотенуза, значит S = 1/2 * 5 корней из 2 * 5 корней из 2 S = 1/2 * 50 = 25. ( Если есть наименование (см,м,дм) , не забудь поставить квадрат! )
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
угол К=180°–150°=30°
угол L=180°-(30+30)=120
LDM=L–60°,D–90° ,M–30°(всего,180°)
LMK=L–120°, M–30°,K–30°(всего,180°)
Объяснение: