М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Суховруктик
Суховруктик
15.03.2022 22:09 •  Геометрия

Напиши уравнение прямой проходящей через точки s (4;10) v (5;2). найти растояние между точками

👇
Ответ:
ocreater
ocreater
15.03.2022
Хорошо, я с удовольствием помогу тебе с этим вопросом.

Чтобы найти уравнение прямой, проходящей через две заданные точки, мы можем использовать уравнение прямой вида y = mx + c, где m - это наклон прямой, а c - это свободный член.

Шаг 1: Найдем наклон (m) прямой, используя заданные точки (4,10) и (5,2).
Формула для нахождения наклона между двумя точками (x1, y1) и (x2, y2) - m = (y2 - y1) / (x2 - x1).

m = (2 - 10) / (5 - 4)
m = -8 / 1
m = -8

Шаг 2: Теперь, когда у нас есть наклон (m), мы можем использовать любую из заданных точек, чтобы найти свободный член (c).
Давайте возьмем точку (4,10) и используем формулу y = mx + c чтобы найти c.

10 = -8 * 4 + c
10 = -32 + c

Добавим 32 ко обеим сторонам уравнения:

10 + 32 = -32 + c + 32
42 = c

Таким образом, свободный член (c) равен 42.

Шаг 3: Подставим полученные значения для m и c в уравнение прямой y = mx + c.

Таким образом, уравнение прямой, проходящей через заданные точки (4,10) и (5,2) будет:

y = -8x + 42

Теперь перейдем ко второй части вопроса о нахождении расстояния между точками.

Шаг 4: Для нахождения расстояния между двумя точками (x1, y1) и (x2, y2) мы можем использовать формулу расстояния между двумя точками в декартовой системе координат:

d = √((x2 - x1)^2 + (y2 - y1)^2)

Подставим координаты точек s (4,10) и v (5,2) в формулу:

d = √((5 - 4)^2 + (2 - 10)^2)
d = √(1^2 + (-8)^2)
d = √(1 + 64)
d = √65

Таким образом, расстояние между точками s (4,10) и v (5,2) равняется √65.
4,7(71 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ