Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора :
ВК=√(9²-3²)=√((9-3)(9+3))=√(6*12)=6√2(см).
ВК-высота трапеции, значит r=3√2 см.
S(круга)= π (3√2 )²=18π (см²).
Подробнее - на -