Объяснение:
170 см²
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²
Так как параллелепипед прямой, все его рёбра перпендикулярны основанию АВСД.
АА₁ перпендикулярно плоскости основания, следовательно, перпендикулярно любой прямой в плоскости АВСД и проходящей через А.
АА₁⊥АС.
А₁С - большая диагональ призмы, АС - большая диагональ основания.
Искомый угол- ∠А₁СА.
По т.косинусов АС²=AB²+BC²-2AB•DC•cos∠ABC
ВС||АД, АВ - секущая. Сумма односторонних углов параллелограмма равна 180°
∠АВС=180°-60°=120°; cos120º= -1/2
АС=√(25+9 - 2•3•5•(-1/2)=√49=7
tg A₁CA=AA₁:AC=7√2)/7=√2 ≈ 1.4142
Это тангенс угла = ≈ 54°44'