Как известно, диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали. Точку пересечения диагоналей обозначим О. Проведем ОЕ перпендикулярно ВД. Соединим В и Е. В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. Треугольник ВЕД - равнобедренный. Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД) Синус угла АВЕ=а:2а=0,5, и это синус угла с градусной мерой 30°. Второй угол, на который диагональ ВД поделила угол АВС, равен ∠СВЕ=90°-30°=60° Остальные углы прямоугольника делятся диагоналями также на углы30° и 60°. ВОТ ТАК.
Основание равнобедренного треугольника равно V10 см и является диаметром окружности. Боковая сторона треугольника делится окружностью в отношении 4 к 1, считая от вершины. Найти площадь треугольника.
РЕШЕНИЕ:
• Пусть АЕ = х , тогда ЕС = 4х, тогда АС = ВС = 4х + х = 5х • тр. АВЕ - прямоугольный, так как угол АЕВ опирается на диаметр окружности => угол АЕВ = 90° • Рассмотрим прямоугольный тр. ВСЕ: По теореме Пифагора: ВС^2 = СЕ^2 + ВЕ^2 ВС^2 = ( 5х )^2 - ( 4х )^2 = 25х^2 - 16х^2 = 9х^2 ВС = 3х • Рассмотрим прямоугольный тр. АВЕ: По теореме Пифагора: АВ^2 = АЕ^2 + ВЕ^2 ( V10 )^2 = x^2 + ( 3x )^2 10 = x^2 + 9x^2 10x^2 = 10 x^2 = 1 x = 1 Значит, АЕ = 1 , СЕ = 4 , АС = ВС = 5 , ВЕ = 3 • S abc = ( 1/2 ) • AC • BE = ( 1/2 ) • 5 • 3 = 15 / 2 = 7,5
DE+EF+2+4=6. DF=DE+EF
Объяснение:
зделай этот ответ самым лутшим