Обозначим стороны как . И пусть тогда большая высота опускается на меньшую сторону , меньшая на большую . Тогда площадь с одной стороны равна , с другой стороны . Вспомним что угол между высотами проведенные с тупого угла равен острому углу параллелограмма.Учитывая это обозначим угол между высотами как тогда острый угол равен следовательно тупой . Из прямоугольных треугольников которые образовались после проведения высота соответственно на стороны равны тогда площадь запишится как но и она же равна приравняем -3 нам не подходит потому что синус в четверти положителен Диагональ выразим по теореме косинусов с первого равенство выразим синус через косинус затем подставим и решим уравнение перейдем в общем к такому решая это уравнение получим оно примерно равна 26
Диагональ с двумя высотами образует 2 треугольника. Обозначим углы против этих высот за α и β. Тогда sin α = 3/5. а sin β = 2/5. cos α = √(1-9/25) = 4/5 cos β = √(1-4/25) =√21/5. Острый угол параллелограмма равен сумме α и β. Для определения площади параллелограмма надо найти его основание, которое равно 5*cos α - 3 / tg(α+β). tg(α+β) = (tg α+tg β) / (1 - tg α*tg β). tg α = sin α / (1-sin²α) = (3/5) / (√(1-9/25)) = 3 / 4, tg β = (2/5) / (√(1-4/25)) = 2 / √21. tg(α+β) = ((3/4)+(2/√21)) / (1-(3/4)+(2/√21)) = 1,76376. Основание равно 5*(4/5) - 3/1,76376 = 2,29909. Площадь параллелограмма равна: 3*2,29909 = 6,89727.
(0; 1) и (-1; 0)
Объяснение:
x² - 2xy + 2x - y + 1 = 0
Преобразуем уравнение
(х² + 2х + 1) - у(2х + 1) = 0
(х + 1)² - у(2х + 1) = 0
у = (х + 1)² : (2х + 1)
или
у = 1 + х²/(2х + 1)
По условию отношение х²/(2х + 1) = k ( k - целое число)
х² = 2кх + k
х² - 2кх - k = 0
Единственное решение имеет место, если дискриминант равен нулю
D = 4k² + 4k = 0
k = 0 и k = - 1
Итак, мы получили
х²/(2х + 1) = 0 ⇒ х = 0 ⇒ у = 1 + х²/(2х + 1) = 1
х²/(2х + 1) = -1 ⇒ х = -1 ⇒ у = 1 + х²/(2х + 1) = 0
Итак
при х = 0 у = 1 - 1--е целочисленное решение
а при х = -1 у = 0 - 2-е целочисленное решение